Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.061$
$w R$ factor $=0.153$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Propyl 4-(3,4-dicyanophenoxy)benzoate

The title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, a phthalonitrile derivative, contains two aromatic rings, one of which carries two cyano groups. The crystal structure is stabilized by one intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and subphthalocyanines (McKeown, 1998; Leznoff \& Lever, 1989-1996). Around 80000 tons per year of phthalocyanines are produced to be used as dyes and pigments (Wörhle, 2001). They are excellent pigments with good thermal and chemical stabilities and they have found wide applications in different fields, including liquid crystals, chemical sensors, photodynamic cancer therapy (Decreau et al., 2001), non-linear optics, molecular electronics, gas sensors, photosensitisers, catalysts, semiconductive materials, photovoltaic cells and electrochromic displays (McKeown, 1998; Leznoff \& Lever, 1989-1996).

(I)

Rings A (atoms $\mathrm{C} 3-\mathrm{C} 8)$ and $B(\mathrm{C} 9-\mathrm{C} 14)$ have a dihedral angle of $85.47(11)^{\circ}$. The $\mathrm{C} \equiv \mathrm{N}$ bond lengths (Table 1) display triple-bond character and are similar to values reported by Atalay et al. (2003) and Ocak, Çoruh et al. (2004).

The $\mathrm{C}-\mathrm{O}$ bond lengths in the ester group agree with those of other esters (Bujak et al., 2002; Ocak, Büyükgüngör et al., 2004).

Experimental

Propyl 4-hydroxybenzoate ($1.20 \mathrm{~g}, 6.66 \mathrm{mmol}$) and 4-nitrophthalonitrile ($1.00 \mathrm{~g}, 5.78 \mathrm{mmol}$) were dissolved in dry dimethylformamide (30 ml) with stirring under N_{2}. Dry fine-powdered potassium carbonate ($1.0 \mathrm{~g}, 7.24 \mathrm{mmol}$) was added in portions $(10 \times 1 \mathrm{mmol})$ every 10 min . The reaction mixture was stirred for 48 h at room temperature and poured into ice-water (150 g). The product was filtered off and washed with $(10 \% w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield $0.84 \mathrm{~g}, 47.46 \%$). Single crystals were obtained

Received 10 March 2005 Accepted 30 March 2005 Online 9 April 2005
from absolute ethanol at room temperature by slow evaporation (m.p. 373 K). Elemental analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 70.58, H 4.61, N 9.14\%; found: C 70.46, H 4.52, N 9.18\%. IR ($v_{\max }, \mathrm{cm}^{-1}$): 3055-3022 (Ar-CH), 2960-2865 (CH), $2221(\mathrm{CN}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.05\left(3 \mathrm{H}, t, \mathrm{CH}_{3}\right), 1.80\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 4.31\left(2 \mathrm{H}, t, \mathrm{CH}_{2}-\mathrm{O}\right), 7.11-7.36$ (3H, $m, \mathrm{Ar}), 7.75-7.86(2 \mathrm{H}, d, \mathrm{Ar}), 8.13-8.18(2 \mathrm{H}, d, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.45\left(\mathrm{CH}_{3}\right), 22.07\left(\mathrm{CH}_{2}\right), 66.84(\mathrm{C}-\mathrm{O}), 109.90,114.65$ (CN), 115.07 (CN), 117.93, 119.88, 122.12, 122.32, 132.30, 135.52, 157.47, 160.61, $165.42(\mathrm{C}=\mathrm{O})$.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=306.31$
Monoclinic, $P 2_{1} / c$
$a=5.0843(9) \AA$
$b=29.440(5) \AA$
$c=10.823(2) \AA$
$\beta=92.419(16)^{\circ}$
$V=1618.5(5) \AA^{\circ}$
$Z=4$

Data collection

Stoe IPDS-2 diffractometer
Absorption correction: none
10034 measured reflections 3009 independent reflections 868 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.061
wR(F}\mp@subsup{F}{}{2})=0.15
S=0.81
3009 reflections
2 3 1 \text { parameters}
H-atom parameters constrained
```

$R_{\text {int }}=0.096$
$D_{x}=1.257 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3195
reflections
$\theta=1.4-21.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.80 \times 0.35 \times 0.09 \mathrm{~mm}$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-5 \rightarrow 6$
$k=-35 \rightarrow 35$
$l=-13 \rightarrow 13$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0483 P)^{2}\right]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0129 (17)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 2-\mathrm{C} 15$	$1.204(4)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.148(4)$
$\mathrm{O} 3-\mathrm{C} 15$	$1.293(4)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.146(5)$
$\mathrm{O} 2-\mathrm{C} 15-\mathrm{O} 3$	$123.5(4)$	$\mathrm{O} 2-\mathrm{C} 15-\mathrm{C} 12$	$123.9(5)$

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2$	0.93	2.46	$2.786(5)$	101
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.47	$3.345(4)$	157
$\mathrm{C} 16 \mathrm{~A}-\mathrm{H} 16 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.57	$3.41(2)$	145

Symmetry codes: (i) $-x, 1-y, 2-z$; (ii) $x-1, y, z$.
H atoms were positioned geometrically and refined using a riding model, fixing the aromatic $\mathrm{C}-\mathrm{H}$ distances at $0.93 \AA$, methylene $\mathrm{C}-$ H distances at $0.97 \AA$ and methyl $\mathrm{C}-\mathrm{H}$ distances at $0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(1.5$ for methyl groups $)$ of the parent atom. Atoms C16, C17 and C18 of the propyl group show positional disorder. The site-occupation factors of the disordered atoms refined to 0.526 (17) and 0.474 (17).

Figure 1
An ORTEPIII (Burnett \& Johnson, 1996) drawing of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 30% probability level.

Figure 2
The packing of the title compound. Hydrogen bonds are shown as dashed lines.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o1111o1112.
Bujak, M., Zaleski, J., Prezhdo, V. \& Uspenskiy, B. (2002). Acta Cryst. C58, o76-o77.
Burnett, M. N \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Decreau, R., Richard, M. J. \& Julliard, M. (2001). J. Porphyrins Phthalocyanines, 5, 390-396.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. $1,2,3 \& 4$. Weinheim \& New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Ocak, N., Büyükgüngör, O., Akdemir, N., Ağar, E., Özil, M. \& Erdönmez, A. (2004). Acta Cryst. E60, o505-o507.

Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Wörhle, D. (2001). Macromol. Rapid Commun. 22, 68-97.

